

Date:

Structural Calculations

Project: Ehrhardt Residence 8456 N. Mercer Way

Mercer Island, WA 98040

For: Sturman Architects 9 – 103rd Avenue NE, Suite 203 Bellevue, WA 98004

By: Année Structural Engineering, LLC 1801 18th Ave S Seattle, WA 98144

August 16, 2023

Design Criteria

				Date:	7/20/2	2023	
Project Name:	Ehrhardt	Residence		Soil Bearing:	2000	psf	
Location:	8456 N. N	lercer Way, Merce	r Island, WA	Frost Depth:	12"		ANNÉE STRUCTURA
Dead	Roof:		Floors:			Walls:	TININLL ENGINEERING, LL
Loads:	Comp. Roofing	5.1 PSF	Flooring	3.0 PSF		Siding	2.3 PSF
	1/2" Sheathing	1.7 PSF		0.0 PSF		Plywood	1.7 PSF
	Rafters	2.2 PSF	3/4" Sheathing	2.5 PSF		2x Studs	1.8 PSF
	Insulation	0.9 PSF	Joists	2.2 PSF		Insulation	0.5 PSF
	5/8" Gypsum	2.8 PSF	5/8" Gypsum	2.8 PSF		1/2" Gypsum	2.2 PSF
	<u>Miscellaneous</u>	2.3 PSF	Miscellaneous	<u>1.5</u> PSF		Miscellaneous	<u>1.5</u> PSF
	Total	15.0 PSF	Total	12.0 PSF		Total	10.0 PSF
Live Loads:	Snow	25.0 PSF	Floor	40.0 PSF		Wind	17.1 PSF
Seismic Load	<u>ds:</u> per 2018	IBC, Sect. 1613 &	ASCE 7-16, Chapter 1	1			

Design Category = D	Importa	nce = 1.0			Redundancy =	1.00
Site Class = D		R = 6.5				
Latitude ($^{\circ}N$) = 47.585	(per USGS)	S _s = 1.391	$F_a =$	1.20	$S_{DS} = 2/3(F_a x S_s) =$	1.113
Longitude ($^{\circ}W$) = 122.224	(per USGS)	$S_1 = 0.484$	$F_v =$	1.82	$S_{D1} = 2/3(F_v x S_1) =$	0.586
$\begin{array}{ll} \underline{Building} & C_t = \\ Height & h_n = \end{array}$	0.02 (wood) 18.0 ft.					
Period $T=C_t(h_n)^{3/4}=$	0.17 sec.	T ₀ =0.2*(9	$S_{D1}/S_{DS}) =$	0.11	$T_{S} = (S_{D1}/S_{DS}) =$	0.53
S _a = 1.113	$S_a = S_{DS}$ if $T_0 < T_1$	<t<sub>s, S_a=0.6*(S_{DS}/T₀)*</t<sub>	T+0.4*S _{DS}	; if T<1	T_0 , $S_a = S_{D1}/T$ if $T > T_s$	
No	t greater than:	$C_s = S_{D1}/T^*(R/I)$	= 0.516			
	Not less than:	C _s =0.044S _{DS} *I	= 0.049			
Design Category E or F;	not less than:	$C_s = 0.5S_1/(R/I)$	= 0.037			
Seismic Desi	gn Coefficient:	$C_s = S_{DS} / (R/I)$	= 0.171			
		C _s	= 0.171			
Seismic Weight Distrubution:				n		

<u>Diaphragm</u>	<u>h, (ft.)</u>	<u>w_i (kips)</u>	<u>h_iw_i (K-ft.)</u>	<u>w_ih_i/sum(w_ih_i)</u>	<u>F; (lbs.)</u>	Sum F _i (lbs.)
			0	0	0	0
			0	0	0	0
			0	0	0	0
Roof	16.5	113.11	1866	0.7345	16,942	16,942
Main Floor	8.5	<u>79.36</u>	<u>674.5</u>	0.2655	6,123	23,065
		192.47	2541			-

Design Base Shear (ASD) = 0.7*(0.171 * W) = 0.120 * W = 23,065 lbs.

Wind Loads:	per ASCE	7-16, Section 27	.5		Section 30.4	Clado	ding (ft2	2): 100		20	
	·			(ASD)					<u>(ASD)</u>		(ASD)
Wind Speed (MPH)	110	Zone		Adj.			<u>Zone</u>	<u>Pn30</u>	<u>P</u>	<u>Pn30</u>	<u>P</u>
Exposure	C	Wall - Ph	25.8	15.5	(p.352)	Wall	4	-20.4	-15.4	-22.6	-17.1
Roof Pitch (x:12)	5	Wall - Po	25.6	15.3			5	-22.6	-17.1	-27.2	-20.5
K ₁ =	0.00	Roof - 1	9.2	5.5		Roof	1	-22.8	-17.2	-31.0	-23.4
K ₂ =	0.00	Roof - 2	-7.6	-4.6			2e	-22.8	-17.2	-31.0	-23.4
K ₃ =	0.00	Roof - 3	-25.2	-15.1			2n	-29.0	-21.9	-43.3	-32.7
$K_t = (1 + K_1 * K_2 * K_3)^2 =$	1.00	Roof - 4	-22.4	-13.4			2r	-29.0	-21.9	-43.3	-32.7
<i>(p.362)</i> λ =	1.26	Roof - 5	-19.3	-11.6			<u>3e</u>	-29.0	-21.9	-43.3	-32.7
(p.291) Exp. Fctr =	1.00						3r	-36.5	-27.6	-52.0	-39.2

Google Maps 8546 N Mercer Way

110 mph, Exposure C, Kt = 1.00

Map data ©2022 Google 1000 ft ∎

Erdhardt Residence

8456 N Mercer Way, Mercer Island, WA 98040, USA

Latitude, Longitude: 47.5852958, -122.2240024

2nd a	SE 28th St	Outhouse St. N. Mercer Way Outhouse St. N. Mercer Way
Data	3.4	
Design Co	ode Reference Document	ASCE7-16
Risk Cate	gory	П
Site Class	8	D - Default (See Section 11.4.3)
Туре	Value	Description
SS	1.391	MCE _R ground motion. (for 0.2 second period)
S ₁	0.484	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.669	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8	Site-modified spectral acceleration value
S _{DS}	1.113	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA
Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
Fa	1.2	Site amplification factor at 0.2 second
Fv	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.595	MCE _G peak ground acceleration
F _{PGA}	1.2	Site amplification factor at PGA
PGAM	0.714	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	1.391	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.541	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3.302	Factored deterministic acceleration value. (0.2 second)
S1RI	0.484	Probabilistic risk-targeted ground motion. (1.0 second)
S100	1 347	Factored deterministic acceleration value. (1.0 second)
PGAd	1.139	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.903	Mapped value of the risk coefficient at short periods
C _{R1}	0.897	Mapped value of the risk coefficient at a period of 1 s

ANNÉE STRUCTURAL

L 1801 18th Ave S, Seattle, WA 98144 206.658.5169

Sheet

Date

⊕

LINE (13, 1267)= 2,560	LINE (); N= 467. (4,00,6+)+501. (2,117+)+3.51 (5.321+)
$V_{\varepsilon} = 2,5Lot / 14.8 = 173 + 6. \rightarrow SN(\varepsilon) + . EVISTINC, NO CUANCES$	= $4,525$; $N_{e} = 4,525/9,1 = 508 + (A, -9, 503)$
LINE (); Jp= 179. (13,126+)= 2,231+	LINE (B); $V_{B} = 7? (4,006) + 257 (2,117*) + \frac{73}{10.8} (5.321*)$
·Ue= 2,231*/34,2'= (55*/cr, -> Swb/Sw(E)*	= 4,466*, 18 = 4,406*/7.8'= 565*/R,-> 5002
UNE (C); VG= 9.57 (13,126*) = 1,247*	LINE (4); VC1 = 177, (4,00,*)+259.(2,117*)+5,124*
Ne= 1,247#/11.6'= 108# Pet 5 Sw (E)* EXISTING, NO CHANGES	= 6,334 ; Vey = 6,334 */17.1 = 370 * a> SWY
TO LOWER FLUOR WALLS FON:	
LINE 3; V3= 24% (9561")+ 18.9 (4,680")= 4,355"	LINE (E), (E), $V_{FF} = 337. (4,006) + 2,560 + 2,731 + 2,771$
N324,355#/255= 171+16,→ SW(E)*	= 6,113"; NRP = 6,113"/77,1'= 79"/4 J. (B) FON.
	OVERTURINC. FROM MAIN PLR. WALK:
LINE (5): $V_5 = 217.(9.514) + \frac{19.1^{12}}{232^{12}}(3.830^{4}) = 5.162^{11}$	LINE(S); T5= 117+(a. (8.0) - 26.7) (0.6x30) = 32.04
N5= 5,162*/19,15= 265*(0,-> EXISTING, . UNCURNICED.	: NO HO NEOD
LINE (; UL= 22.7. (4,006)+2,117 + 6,441 = 9,439	BY INSPECTION NO HID READ & LINES (D, Q, 3)
No= 9,439*/211= 447* -> EXISTING.	D.C.C.C
	NOCHANCES C LINE (6) : NO MODEO NO
LINE (D; $\sqrt{1}_{17} = 237.(9,564^{+}) + 2269^{+} = 4,469^{+}$ $\sqrt{1} = 4,469^{+}/21.7 = 206^{+}/m, \rightarrow EXISTING$	LINE (D; $T_0 = 408(3.0) - \frac{14.51}{2}(0.6\times30) = 2.916^{4}$
Unichances	: MSTC52/MSTC4283
LINE (3); Vg= 37 (9,564*) + 567*= 1,332*	
Ng= 1,332#/21.6= 62#/R> EXISTING, UNCMANICO	
* SW(E) IS ACCUMED TO BE WIN, 3/5" CD PLY W/ 6" DC PANEL EDGE NAILING BASED ON ACE OF STEVETURE, STRE OBSERVATIONS ($V_q = 205^*/R$.)	

	Project		Designer	-
			Date	
ANNÉE STRUCTURAL ENGINEERING, LLC	1801 18th Ave S, Seattle, WA 98144	206.658.5169		Sheet

•

ANNÉE STRUCTURAL	

1801 18th Ave S, Seattle, WA 98144 206.658.5169

 $^{\odot}$

DIAPHRACM FORCES ACRUSS CRID @ E STEPS IN DIAPHRACH ELEVATIONS;	
AT ROOF e (2) LOCATIONS:	
Fp= 25,476 (125 x 25,174*) x 0.7 (ASD) /2	
$= 2.481.^{\text{t}}$ $h_d = 2.50^{\circ}$	
NoT FUR. C (2) LOCATIONS?	
$F_{p} = \frac{27,438}{74,356} (1.25 \times 17,661^{*}) \times 0.7 (A50)/2$	
= 2,672 hd = 1-7"	
La = 2,672 / 2 (140 / pr. x 093) = 10.26 cr 10-3	
$\begin{array}{c} (COVE DETAIL' (CVASICIES 10-5 MIN) \\ (SOVE DETAIL' (SOVE 10-5 MIN) \\ $	
FLOOR DETAIL;	
2,672 Ecce46/76 1.575' or 624 608 1140	
7.8' Structure Construct	
Project	Designer
	Date
	_

ANNÉE STRUCTURAL ENGINEERING, LLC

c 1801 18th Ave S, Seattle, WA 98144 206.658.5169

Sheet

⊛

$(1) -12.2, u = \frac{24^{\circ}}{(26+15)} = 80^{\circ}/6.$	
P-1-4224 . M=1498 a. b	(9) $\left(= 18.375'; w = \frac{29.8'}{2} (25+15) = 596'' \right) = 1000$
h = 1 = 1 = 0 = 1 = 1 = 1 = 1 = 1 = 1 = 1	R=N= 5,476; M= 25,154 pr-4
$w = 05 ps_{1} + w = 050 ps_{1} + 4m = 0.51 - 1112$	fr= 111 psi; fr= 1.807 psi; An= 0.75"= 4292
	:. 5/2×13/2 CUB
2) SEE ATTACHED CALC> 5/2×12 CLB	$(0 \ (= 11.9'; w = \frac{13.5'}{2}(25+15) = 270* _{P_{-}}$
	R=V = 1,607 ; M= 4,779 Pr-H
3) SEE ATTHOMAS OUL - SILXIL CLS	€= 73 psi; €= 1,087 poi € 900 (1.2)1.15
4) (= 24,0° P= 3,640° e M10-Pr.; W= 20° (a.	Dr= 0.30"= Yula : 4x10 De#2
R=V= 2,060*; M= 23,280 #	
Ev= 42 psi, fr= 1,672 psi, Dn= 0,971"=4/298	(11) $L = 6.0^{\circ}, w = 12.2^{\circ}(25+15) = 489, *6.$
: 5/2×13/2 GLB	R=V=1,451.#, M=2,176 07-4
(5) She Manual ANIA 27 7412 MERT OIL	fuz 83 psi; foz 796 psi; 4×8 08+2 (EXISTINE)
(J) SZE KINGONEO OKU OKU OV	(12) $ _{-100}$, $ _{12} _{215} _{25+15} _{-521} _{16}$
(232)/(23)	
(6) $(=21,05; W=-\frac{2}{2},(25+15)=465, Ter,$	R=1= 2620-1 10(= 0,512 4-4
R=V= 4,887*; M=25,699 Pr-10	Lu= 125 priv; to=1,1570 priv; An= 0.31"= 1388
f. = 109 pri; fr= 1,710 pri; An= 0,74"=1/342	: 3/2×9 GLB
:, 51/2 15 GUB	3 SEE ATTACHED CALC> (2)2×12 NEH2
D SEE ATTACHED CALL> 51/2x12GL8	

Project

L	1801	18th	Ave	S,	Seattle,	WA	98144	206.658.5169	

	Sheet	
. 8924		

Designer

Date

11

۲

•

[4] (=165; w= 167(25+15)= 670 k(m.	(19) $L = 6.8^{\circ}; w = \frac{12^{\circ}}{12^{\circ}} (60+18) = 102^{\circ} [a.$
R=N= 5,528"; (N= 22,90) ====	R=N=354*; N=601 A-#
fux 112 psi; for= 1,638 psi; An= 0.55"= 436	Lu= 19 pin; 5=1319 pin; An= 0.05"= 4/1540
: 5/2×13/2 GUB	: 268 HF#2 @ 165
	(219820 44" PEC FF-)
(5) SEE ATTACHED COLC> (2)2X12 HEH2	
	(73) SEE ATTACHED CALC> 31/229 CUB
(16) L= 3.4', P= 78642 (25+15)= 7,856*	
R=V= 3,939*; M= 6,693 p====	TO SEE ATTACHED CALC> (3)2×10 HF#2
fr= 188 psi. fr= 1,700 psi : 3/2×9 GB	
	(20) SEE ATTACHED CALC7: 5/2×15 CLB
	(UPSET)
((4)) =71, w= 478 Mar, Reve 1815 Me 2448 E.H.	(= 58157 -) = 9,935 - (A = 15,971 e a
SEE # (D) => 1/210 D##2	(1.5)
FLOOR FRAMINC (30-404, 12-22 02)*(9+7:	: ='.x () = (LE
(7) $l = 11.0; \omega = \frac{16^{\prime\prime}}{12^{\prime\prime}} (40 + 15) = 73 \frac{16}{7} fraction$	
R=V=403*: M=1,109 pr. 10	$(c_{G^{2}}, c_{-}, c_{+}, c_{+})$
L= 44 psi; L= 622 psi; Dn= 0.19"= 4703	(21) $l = 24.15'; l = \frac{14.15'}{2}(lo+18) = 552*[a.$
: 2×10 HF#2 e 16 oli	R=N= 6,602#; M=40,220 A-#
	for 117 pri : for = 1,844 pri: Don= 0.80"= 4/330.
(18). $l = 13.7'$; $l = \frac{12''}{12''} (lor + 18) = 178 * la.$: 51/2× 18 CUS
R=V= 534 #; M=1,820 pr-4	
fu= 68 psi: f1= 963 psi; An= 0,44"= 4374	STREEL OPTION; SZ 16.1 in3; JZ 1862 in4
:. 2×10 HF#2 @ 12"00	: W12x26/W10x39
(ILIPPEO 'JY PER PR.)	

h_{mid} = 955" h_{low} = 7.86"

 Project
 Designer

 ANNÉE STRUCTURAL
 1801 18th Ave S, Seattle, WA 98144 206.658.5169
 Date

⊛

(22) SEE ATTACHED CALC> <u>5/1×13/2 GUB</u>	(29) SEE ATTACHED CALE>. 5/2×13/2 CL8
(23) SEE ATTACHED CALC> 5/2×15 GUB	
(4) (=21,75' W= 6.85' (601+130)= 267*/00/10.	(30) $l = 185'; \omega = \frac{258'}{2}(30+17) + 8'(7) = 662! * lor.$
R=V=2,905+; M=15,797 R-#	R=Y= 6,126# ; M= 29,334 P-+
Suz 64 psi; So= 1,436 psi; An= 0.94"= 4277 : 542 2 Glob Du= 4360 Dow= 0.72"	C= 115 pi ; fo= 1,649 pi; Dn= 0.63 = 4354 ∴ 5/2×15 GB
(25) SEE ATTACHEO CKU. → 51/2×12 GUB	(3) $l = 9.25'; \omega = \frac{25.3'}{2}(30+12) + S(7) = 598#/147.$ R = 1 = 2.766#; M = 6.396; PT - 14
23 SAR AMACMAN CALL, -> 63/429 CUB	$L = 101 \text{ gsi}; f_{D} = 1,433 \text{ psi}; D_{TL} = 0.23^{M} = 4357$ SEE ATIA (MRD CALC7 5/h:X10/h GLB
	(32) SEE ATTACHED CALC, -> 4x6 DF#2
(27) L= 18.4'; w= 9.13'(40+12) = 237#14.	
R=N= 2,181*; M= 10,046 4.4 fr= 59 priv, fr= 1,193 pri; Dn= 0.64"= 4345 : 5/2×10/2 CUB	$\begin{array}{l} (34) \left(= 12.9^{12}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
(28) SEE ATTACHED CALC> 5/2×9 GUB	: 5/2×10/2 GUB 0-3/2×12 CUB
	35) SEE ATTACHED CALC, -> 63/4×10/2 CLB

	Project		Designer		
			Date		
ANNÉE STRUCTURAL ENGINEERING, LLC	1801 18th Ave S, Seattle, WA 98144	206.658.5169		Sheet	

œ

Roof Framing, 2 - Drop Beam 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7981 @ 15' 6 3/4"	19663 (5.50")	Passed (41%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	3699 @ 14' 4"	13409	Passed (28%)	1.15	1.0 D + 1.0 S (Adj Spans)
Pos Moment (Ft-Ibs)	8169 @ 7' 2 7/8"	30360	Passed (27%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-11107 @ 15' 6 3/4"	23403	Passed (47%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.109 @ 7' 10 3/8"	0.707	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.174 @ 7' 10 1/16"	0.943	Passed (L/974)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

Overhang deflection criteria: LL (2L/240) and TL (2L/180).
Allowed moment does not reflect the adjustment for the beam stability factor.

Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 4 13/16".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 71.4 + 157 + 15.

• Childran regarive moment adjusted by a volume/size factor of 1.00 that was calculated using regime z = 7.3 9/10

The effects of positive or negative camber have not been accounted for when calculating deflection.
The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Column - DF	5.50"	5.50"	1.50"	1430	2223	3653	Blocking	
2 - Column - DF	5.50"	5.50"	2.23"	2830	5151	7981	Blocking	
3 - Stud wall - HF	5.50"	5.50"	1.50"	293	893	1186	Blocking	
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.								

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	31' 6" o/c	
Bottom Edge (Lu)	31' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 31' 6 3/16"	N/A	16.0		
1 - Uniform (PSF)	0 to 17' 5 3/16" (Front)	12' 2 1/16"	15.0	25.0	Default Load
2 - Tapered (PSF)	17' 5 3/16" to 23' 6" (Front)	12' 2 1/16" to 10' 1 1/8"	8.0	25.0	Default Load
3 - Tapered (PSF)	23' 6" to 31' 6 3/16" (Front)	10' 1 1/8" to 0	8.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com

Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3955 @ 1' 5"	19663 (5.50")	Passed (20%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	3065 @ 2' 7 3/4"	13409	Passed (23%)	1.15	1.0 D + 1.0 S (Adj Spans)
Pos Moment (Ft-Ibs)	17710 @ 11' 9"	30215	Passed (59%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-337 @ 1' 5"	23403	Passed (1%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.570 @ 11' 9"	1.033	Passed (L/435)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.953 @ 11' 9"	1.378	Passed (L/260)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

Upward deflection on left and right cantilevers exceeds overhang deflection criteria.

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 20' 6 3/8".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 1' 6 3/16".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	1599	2356	3955	Blocking
2 - Column - DF	5.50"	5.50"	1.50"	1599	2356	3955	Blocking
Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.							

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	23' 6" o/c	
Bottom Edge (Lu)	23' 6" o/c	

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 23' 6"	N/A	16.0		
1 - Uniform (PSF)	0 to 23' 6" (Front)	8' 1/16"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com Job Notes

Roof Framing, 5 - Rafters 1 piece(s) 2 x 12 HF No.2 @ 16" OC

Sloped Length: 23' 7 13/16"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 517 @ 21' 5 1/2" 3341 (5.50") Passed (15%) 1.0 D + 1.0 S (All Spans) Shear (lbs) 444 @ 20' 6 1/8" 1941 Passed (23%) 1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs) 1.0 D + 1.0 S (All Spans) 2236 @ 12' 5 5/16" 2964 Passed (75%) 1.15 Live Load Defl. (in) 0.464 @ 11' 6 1/2' 1.142 Passed (L/591) 1.0 D + 1.0 S (All Spans) Total Load Defl. (in) 0.864 @ 11' 4 5/16" 1.523 Passed (L/317) 1.0 D + 1.0 S (All Spans) --

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 5/12

• Deflection criteria: LL (L/240) and TL (L/180)

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	5.50"	5.50"	1.50"	161	115	276	Blocking
2 - Beveled Plate - HF	5.50"	5.50"	1.50"	217	300	517	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	4' 8" o/c				
Bottom Edge (Lu)	23' 8" o/c				
Maximum alloughlo hypeing intervale based on applied land					

Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 9' 4 3/4"	16"	8.0	-	Default Load
2 - Uniform (PSF)	9' 4 3/4" to 21' 10"	16"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Mike Annee	
Annee Structural Engineering LLC	
(206) 658-5169	
mike@anneestructural.com	

Job Notes

16

Member Length : 24' 1/2"

Roof Framing, 7 - Beam 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Overall Length: 16' 11 1/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2283 @ 16' 5 3/4"	5363 (1.50")	Passed (43%)		1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	2005 @ 3' 9 1/2"	13409	Passed (15%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	7755 @ 9' 8 1/4"	30360	Passed (26%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-1104 @ 2' 6 3/4"	23403	Passed (5%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.114 @ 9' 6 3/4"	0.696	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.188 @ 9' 6 15/16"	0.928	Passed (L/890)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 13' 7".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 7/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	1328	1952	3280	Blocking
2 - Hanger on 12" HF Ledger	5.50"	Hanger ¹	1.50"	970	1460	2430	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	16' 6" o/c				
Bottom Edge (Lu)	16' 6" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support Model Seat Length Top Fasteners Face Fasteners Mer	nber Fasteners Accessories								
2 - Face Mount Hanger HU614 2.50" N/A 24-10dx1.5	12-10d								

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 5 3/4"	N/A	16.0		
1 - Uniform (PSF)	0 to 16' 11 1/4" (Front)	8' 1/16"	15.0	25.0	Default Load

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com Job Notes

Roof Framing, 8 - Beam 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4201 @ 2"	12031 (3.50")	Passed (35%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3645 @ 1' 5"	15085	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	21789 @ 10' 8 7/16"	37694	Passed (58%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.512 @ 10' 8 7/16"	1.054	Passed (L/494)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.858 @ 10' 8 7/16"	1.405	Passed (L/295)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.98 that was calculated using length L = 21' 7/8".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	1.50"	1696	2505	4201	Blocking
2 - Stud wall - DF	3.50"	3.50"	1.50"	1696	2505	4201	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	21' 5" o/c				
Bottom Edge (Lu)	21' 5" o/c				
Maximum allowable bracing intervals based on applied load					

um allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 21' 4 7/8"	N/A	18.0		
1 - Uniform (PSF)	0 to 21' 4 7/8" (Front)	9' 4 3/8"	15.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com

Job Notes

Roof Framing, 2c - Drop Beam 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

Right cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10227 @ 15' 6 3/4"	19663 (5.50")	Passed (52%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	4878 @ 14' 4"	13409	Passed (36%)	1.15	1.0 D + 1.0 S (Adj Spans)
Pos Moment (Ft-Ibs)	4922 @ 5' 11 15/16"	30360	Passed (16%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-lbs)	-27782 @ 15' 6 3/4"	16735	Failed (166%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	2.683 @ 31' 6 3/16"	1.595	Failed (2L/142)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	3.563 @ 31' 6 3/16"	2.127	Failed (2L/108)		1.0 D + 1.0 S (Alt Spans)

• Deflection criteria: LL (L/240) and TL (L/180).

• Overhang deflection criteria: LL (2L/240) and TL (2L/180).

• Right cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.

Allowed moment does not reflect the adjustment for the beam stability factor.

• Moment capacity over cantilever support 3 has been reduced by 25% to lessen the effects of buckling.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 10 3/16".

• Critical negative moment adjusted by a volume/size factor of 0.95 that was calculated using length L = 31' 6 3/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	1107	1920	3026	Blocking
2 - Column - DF	5.50"	5.50"	2.86"	3446	6782	10227	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	31' 6" o/c	
Bottom Edge (Lu)	6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 31' 6 3/16"	N/A	16.0		
1 - Uniform (PSF)	0 to 17' 5 3/16" (Front)	12' 2 1/16"	15.0	25.0	Default Load
2 - Tapered (PSF)	17' 5 3/16" to 23' 6" (Front)	12' 2 1/16" to 10' 1 1/8"	8.0	25.0	Default Load
3 - Tapered (PSF)	23' 6" to 31' 6 3/16" (Front)	10' 1 1/8" to 0	8.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com	

19

System : Roof Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

Roof Framing, 13 - Joist 2 piece(s) 2 x 12 HF No.2 @ 12" OC

Sloped Length: 23' 3 1/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1233 @ 21' 4 1/8"	1823 (1.50")	Passed (68%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1197 @ 20' 5 3/4"	3881	Passed (31%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	5027 @ 15' 9 7/8"	5928	Passed (85%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.598 @ 11' 5 5/16"	1.145	Passed (L/459)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.972 @ 11' 5 3/16"	1.526	Passed (L/283)		1.0 D + 1.0 S (All Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 5/12

Member Length : 23' 6 1/8"

• Deflection criteria: LL (L/240) and TL (L/180).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	3.50"	3.50"	1.50"	253	399	653	Blocking
2 - Hanger on 11 1/4" HF beam	1.50"	Hanger ¹	1.50"	473	765	1238	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	5' 11" o/c				
Bottom Edge (Lu) 23' 1" o/c					
Maximum allowable bracing intervals based on applied load.					

Connector: Simpson Strong-Tie

connector. Simpson Strong-ne						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
2 - Face Mount Hanger	U210-2X SLD22	2.00"	N/A	14-10dx1.5	6-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 21' 5 5/8"	12"	15.0	25.0	Default Load
2 - Point (lb)	16' 2"	N/A	298	497	
3 - Point (Ib)	20'	N/A	79	131	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Mike Annee
Annee Structural Engineering LLC
(206) 658-5169
mike@anneestructural.com

Roof Framing, 15 - Joist 2 piece(s) 2 x 12 HF No.2 @ 12" OC

Sloped Length: 21' 10 3/8"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results Actual @ Location Allowed Result LDF Load: Combination (Pattern) Member Reaction (lbs) 780 @ 2 1/2" 4253 (3.50") Passed (18%) 1.0 D + 1.0 S (All Spans) Shear (lbs) 733 @ 1' 1 7/8" 3881 Passed (19%) 1.15 1.0 D + 1.0 S (All Spans) Moment (Ft-lbs) 1.0 D + 1.0 S (All Spans) 4629 @ 11' 3 5/8" 5928 Passed (78%) 1.15 Live Load Defl. (in) 0.496 @ 10' 13/16' 1.071 Passed (L/518) 1.0 D + 1.0 S (All Spans) Total Load Defl. (in) 0.805 @ 10' 13/16" 1.428 Passed (L/319) 1.0 D + 1.0 S (All Spans) --

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 5/12

Member Length : 22' 3 1/16"

• Deflection criteria: LL (L/240) and TL (L/180)

• Allowed moment does not reflect the adjustment for the beam stability factor.

• A 15% increase in the moment capacity has been added to account for repetitive member usage.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Beveled Plate - HF	3.50"	3.50"	1.50"	301	480	780	Blocking
2 - Beveled Plate - HF	3.50"	3.50"	1.50"	288	459	747	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	7' 2" o/c				
Bottom Edge (Lu)	21' 10" o/c				
Maximum allowable bracing intervals based on applied load					

Maximum allowable bracing intervals based on applied load

			Dead	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.15)	Comments
1 - Uniform (PSF)	0 to 20' 2 3/16"	12"	15.0	25.0	Default Load
2 - Point (lb)	6' 10 3/8"	N/A	118	196	
3 - Point (lb)	11' 10 3/4"	N/A	143	238	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com Job Notes

Floor Framing, 17B - Flush Beam 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4987 @ 3 1/2"	4987 (2.19")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	4906 @ 1' 1/2"	6400	Passed (77%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-Ibs)	5289 @ 1' 4 3/8"	10868	Passed (49%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.109 @ 4' 11"	0.270	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.259 @ 5' 2 5/16"	0.540	Passed (L/499)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 9 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Hanger on 9" LSL beam	3.50"	Hanger ¹	2.19"	2267	2750	5017	See note 1
2 - Hanger on 9" LSL beam	3.50"	Hanger ¹	1.50"	798	304	1102	See note 1

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 10" o/c	
Bottom Edge (Lu)	10' 10" o/c	
		·

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie Support Model Seat Length

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HHUS410	3.00"	N/A	30-10d	10-10d	
2 - Face Mount Hanger	LUS410	2.00"	N/A	8-10dx1.5	6-10d	

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 11' 1"	N/A	7.7		
1 - Point (lb)	1' 4 3/8" (Front)	N/A	1833	3054	Default Load
2 - Uniform (PLF)	0 to 11' 4 1/2" (Front)	N/A	101.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Job Notes

ForteWEB Software Operator
Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com

8/16/2023 9:48:49 PM UTC ForteWEB v3.6, Engine: V8.3.0.43, Data: V8.1.4.1 File Name: Ehrhardt Residence Page 11 / 25

Floor Framing, 17C - Flush Beam 3 piece(s) 2 x 10 HF No.2

Overall Length: 9' 2 3/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4987 @ 3 1/2"	4987 (2.74")	Passed (100%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	3279 @ 1' 3/4"	4787	Passed (69%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-Ibs)	3426 @ 3' 7 7/8"	5750	Passed (60%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.053 @ 4' 3 15/16"	0.216	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.123 @ 4' 5"	0.432	Passed (L/845)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports			
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories	
1 - Hanger on 9 1/4" LSL beam	3.50"	Hanger ¹	2.74"	2305	2751	5055	See note 1	
2 - Hanger on 9 1/4" LSL beam	3.50"	Hanger ¹	1.50"	836	529	1366	See note 1	
• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger								

¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments			
Top Edge (Lu)	8' 8" o/c				
Bottom Edge (Lu)	8' 8" o/c				
Maximum allowable bracing intervals based on applied load					

kimum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie								
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories		
1 - Face Mount Hanger	HHUS210-3	3.00"	N/A	30-10d	10-10d			
2 - Face Mount Hanger	LUS28-3	2.00"	N/A	6-16d	4-16d			

· Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.15)	Comments
0 - Self Weight (PLF)	3 1/2" to 8' 11 1/4"	N/A	10.6		
1 - Point (lb)	9 3/8" (Front)	N/A	1656	2505	Default Load
2 - Uniform (PLF)	0 to 9' 2 3/4" (Front)	N/A	151.0	84.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com

Job Notes

8/16/2023 9:48:49 PM UTC ForteWEB v3.6, Engine: V8.3.0.43, Data: V8.1.4.1 File Name: Ehrhardt Residence Page 12 / 25

Floor Framing, 20 - Beam

1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6403 @ 3 1/2"	6403 (1.79")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5159 @ 1' 6 1/2"	14575	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	34698 @ 11' 2 1/8"	39912	Passed (87%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.496 @ 11' 2 1/8"	0.544	Passed (L/526)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	1.021 @ 11' 2 1/8"	1.089	Passed (L/256)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.97 that was calculated using length L = 21' 9 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length				Loads					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories	
1 - Hanger on 15" GLB beam	3.50"	Hanger ¹	1.79"	3116	2762	861	1340/-1340	6536	See note 1	
2 - Hanger on 15" GLB beam	3.50"	Hanger ¹	1.79"	3116	2762	861	1340/-1340	6536	See note 1	
 At hanger supports, the Total Bearing dimens 	At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger									

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	21' 9" o/c					
Bottom Edge (Lu)	21' 9" o/c					
Maximum allowable bracing intervals based on applied load.						

Connector: Simpson Strong-Tie

5						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	HGUS5.50/12	4.00"	N/A	56-10d	20-10d	
2 - Face Mount Hanger	HGUS5.50/12	4.00"	N/A	56-10d	20-10d	

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	3 1/2" to 22' 3/4"	N/A	20.0				
1 - Uniform (PSF)	0 to 22' 4 1/4" (Front)	3' 5 1/4"	18.0	60.0	-	-	Default Load
2 - Uniform (PLF)	0 to 22' 4 1/4" (Front)	N/A	182.0	-	77.0	-	
3 - Point (Ib)	11' 2 1/8" (Front)	N/A	343	914	-	-	
4 - Point (Ib)	8' 7 3/4" (Front)	N/A	-	-	-	4569	
5 - Point (Ib)	15' 3/8" (Front)	N/A	-	-	-	-4569	

ForteWEB Software Operator	Job Notes
Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com	

Floor Framing, 22 - Beam 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

An excessive uplift of -2534 lbs at support located at 4' 2 1/2" failed this product.

An excessive uplift of -2437 lbs at support located at 15' failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	10706 @ 15'	12031 (3.50")	Passed (89%)		1.0 D - 0.525 E + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	11903 @ 10' 10 3/4"	20988	Passed (57%)	1.60	1.0 D + 0.7 E (All Spans)
Pos Moment (Ft-Ibs)	44003 @ 10' 8"	53460	Passed (82%)	1.60	1.0 D + 0.525 E + 0.75 L + 0.75 S (Alt Spans)
Neg Moment (Ft-Ibs)	-22509 @ 10' 8"	41209	Passed (55%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.119 @ 9' 9 1/8"	0.270	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.206 @ 9' 10 5/16"	0.540	Passed (L/629)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Overhang deflection criteria: LL (2L/480) and TL (2L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 6 15/16".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 13' 2 1/16".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Column - DF	5.50"	5.50"	3.10"	3179	5535	580	6344/-6344	11096/- 2534	Blocking
2 - Stud wall - DF	3.50"	3.50"	3.11"	3339	3876/-373	1505	6344/-6344	10706/- 2437	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	15' 2" o/c					
Bottom Edge (Lu)	15' 2" o/c					
Maximum allowable bracing intervals based on applied load						

sed on applied

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 15' 2"	N/A	18.0				
1 - Uniform (PSF)	0 to 3' 9 1/2" (Front)	7' 7"	25.0	60.0	-	-	Default Load
2 - Uniform (PSF)	3' 9 1/2" to 14' 10 1/2" (Front)	6' 10 1/8"	18.0	60.0	-	-	Default Load
3 - Point (Ib)	10' 10 3/4" (Front)	N/A	3116	2762	861	-	
4 - Uniform (PLF)	10' 8" to 14' 10 1/2" (Front)	N/A	248.0	-	291.0	-	
5 - Point (Ib)	10' 8" (Front)	N/A	-	-	-	20799	
6 - Point (lb)	13' 11 1/2" (Front)	N/A	-	-	-	-20799	

ForteWEB Software Operator	Job Notes
Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com	

8/16/2023 9:48:49 PM UTC ForteWEB v3.6, Engine: V8.3.0.43, Data: V8.1.4.1 File Name: Ehrhardt Residence Page 15 / 25

Floor Framing, 23 - Beam 1 piece(s) 5 1/2" x 15" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5934 @ 4"	19663 (5.50")	Passed (30%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	4688 @ 1' 8 1/2"	16761	Passed (28%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	33966 @ 9' 1"	46372	Passed (73%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.357 @ 9' 11 1/8"	0.491	Passed (L/660)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.744 @ 9' 11 1/2"	0.982	Passed (L/317)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 0.98 that was calculated using length L = 19' 7 3/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.66"	2775	1226	1935	1500/-1500	5934	None
2 - Column - DF	5.50"	5.50"	1.53"	2571	985	1814	1500/-1500	5458	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	20' 4" o/c	
Bottom Edge (Lu)	20' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 20' 3 3/4"	N/A	20.0				
1 - Point (lb)	9' 1" (Front)	N/A	1872	2211	1108	-	Default Load
2 - Uniform (PLF)	0 to 20' 3 3/4" (Front)	N/A	151.0	-	130.0	-	
3 - Point (lb)	6' 2" (Front)	N/A	-	-	-	2726	
4 - Point (lb)	12' 1 1/4" (Front)	N/A	-	-	-	-2726	
5 - Point (lb)	15' 1 1/4" (Front)	N/A	-	-	-	2726	
6 - Point (lb)	20' 2 1/4" (Front)	N/A	-	-	-	-2726	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com Job Notes

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	8221 @ 10' 11 1/2"	8221 (2.30")	Passed (100%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7524 @ 9' 11 1/2"	13409	Passed (56%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	28109 @ 7' 1 1/4"	30360	Passed (93%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.164 @ 5' 11 3/16"	0.266	Passed (L/777)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.327 @ 5' 11 3/8"	0.531	Passed (L/390)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Deflection criteria: LL (L/480) and TL (L/240).

Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 7 1/2".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	2404	2253	1310	486/-486	5332	Blocking
2 - Hanger on 12" HF beam	5.50"	Hanger ¹	2.30"	3874	3039	2301	854/-854	8327	See note 1

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' o/c	
Bottom Edge (Lu)	11' o/c	

•Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie Support Model Seat Length Top Fasteners Face Fasteners Member Fasteners Accessories 2 - Face Mount Hanger HGUS5.50/12 4.00" N/A 56-10d 20-10d

Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 10' 11 1/2"	N/A	16.0				
1 - Uniform (PSF)	0 to 11' 5" (Front)	5' 6 1/2"	12.0	40.0	-	-	Default Load
2 - Point (Ib)	7' 1 1/4" (Front)	N/A	5343	2762	3611	1340	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Job Notes
Mike Annee
Annee Structural Engineering LLC
(206) 658-5169
mike@anneestructural.com

Weyerhaeuser

8/16/2023 9:48:49 PM UTC ForteWEB v3.6, Engine: V8.3.0.43, Data: V8.1.4.1 File Name: Ehrhardt Residence Page 18 / 25

Floor Framing, 26 - Beam 1 piece(s) 6 3/4" x 9" 24F-V4 DF Glulam

PASSED

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5701 @ 10' 11 1/2"	6581 (1.50")	Passed (87%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	5381 @ 10' 2 1/2"	12342	Passed (44%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-Ibs)	18807 @ 7' 1 1/4"	20959	Passed (90%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.235 @ 5' 10 1/16"	0.266	Passed (L/543)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.450 @ 5' 10 9/16"	0.531	Passed (L/283)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 7 1/2''.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	1872	2211	1108	4362	Blocking
2 - Hanger on 9" HF beam	5.50"	Hanger ¹	1.50"	2734	2260	1947	5889	See note 1

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

• At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger

• 1 See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	11' o/c					
Bottom Edge (Lu)	11' o/c					

Maximum allowable bracing intervals based on applied load.

Connector: Simpson Strong-Tie									
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories			
2 - Face Mount Hanger	HGUS6.88/10	4.00"	N/A	46-10d	16-10d				

• Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 10' 11 1/2"	N/A	14.8			
1 - Uniform (PSF)	0 to 11' 5" (Front)	9' 9 1/2"	12.0	40.0	-	Default Load
2 - Point (lb)	7' 1 1/4" (Front)	N/A	3103	-	3055	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

Job Notes

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com

8/16/2023 9:48:49 PM UTC ForteWEB v3.6, Engine: V8.3.0.43, Data: V8.1.4.1 File Name: Ehrhardt Residence Page 19 / 25

Floor Framing, 28 - Beam 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

An excessive uplift of -6281 lbs at support located at 1 1/2" failed this product. An excessive uplift of -2982 lbs at support located at 8' 4 3/4" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7604 @ 1 1/2"	10313 (3.00")	Passed (74%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	7574 @ 1'	13992	Passed (54%)	1.60	1.0 D + 0.7 E (All Spans)
Pos Moment (Ft-Ibs)	21089 @ 2' 11"	23760	Passed (89%)	1.60	1.0 D + 0.7 E (All Spans)
Neg Moment (Ft-Ibs)	-17617 @ 2' 11"	18315	Passed (96%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.061 @ 4' 2 13/16"	0.276	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.110 @ 4' 2 11/16"	0.414	Passed (L/900)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3 1/4".

Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3 1/4".

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.00"	3.00"	2.21"	827	407	969	9681/-9681	7604/- 6281	Blocking
2 - Stud wall - DF	3.00"	3.00"	1.50"	784	547	868	4933/-4933	4435/- 2982	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 6" o/c	
Bottom Edge (Lu)	8' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 8' 6 1/4"	N/A	12.0				
1 - Uniform (PSF)	0 to 2' 7 1/2" (Front)	1' 6"	12.0	40.0	-	-	Default Load
2 - Uniform (PSF)	2' 7 1/2" to 8' 6 1/4" (Front)	3' 4 1/2"	12.0	40.0	-	-	
3 - Uniform (PLF)	2' 7 1/2" to 4' 3" (Front)	N/A	256.0	-	303.0	-	Default Load
4 - Point (lb)	4' 3" (Front)	N/A	807	-	1345	-	
5 - Point (lb)	2' 11" (Front)	N/A	-	-	-	14614	

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com Job Notes

8/16/2023 9:48:49 PM UTC ForteWEB v3.6, Engine: V8.3.0.43, Data: V8.1.4.1 File Name: Ehrhardt Residence Page 20 / 25

Floor Framing, 29 - Beam 1 piece(s) 5 1/2" x 13 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3911 @ 16' 8"	9467 (4.25")	Passed (41%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3884 @ 15' 5"	13118	Passed (30%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	21960 @ 10' 3 1/2"	33413	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.361 @ 8' 7 7/8"	0.408	Passed (L/543)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.491 @ 8' 7 7/8"	0.817	Passed (L/399)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 16' 4".

The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

· Applicable calculations are based on NDS.

	Bearing Length		Loads	to Supports			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - HF	5.50"	4.25"	1.56"	947	2518	3465	1 1/4" Rim Board
2 - Stud wall - HF	5.50"	4.25"	1.76"	1068	2843	3911	1 1/4" Rim Board

Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments				
Top Edge (Lu)	16' 10" o/c					
Bottom Edge (Lu)	16' 10" o/c					
Maximum allowable bracing intervals based on applied load.						

app

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/4" to 16' 10 3/4"	N/A	18.0		
1 - Point (lb)	5' 9 1/2" (Front)	N/A	595	1985	Default Load
2 - Point (lb)	10' 3 1/2" (Front)	N/A	522	1391	
3 - Point (lb)	11' 3 1/2" (Front)	N/A	595	1985	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com

Job Notes

Floor Framing, 32 - Header 1 piece(s) 4 x 6 DF No.2

Overall Length: 8' 6 1/4"

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2926 @ 3"	9844 (4.50")	Passed (30%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1942 @ 10"	2657	Passed (73%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1287 @ 8 7/8"	1979	Passed (65%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.080 @ 3' 8 9/16"	0.272	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.134 @ 3' 8 7/8"	0.313	Passed (L/729)		1.0 D + 1.0 S (All Spans)

System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/360) and TL (5/16").

• Allowed moment does not reflect the adjustment for the beam stability factor.

Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Trimmer - HF	4.50"	4.50"	1.50"	1144	1782	2926	None
2 - Trimmer - HF	3.00"	3.00"	1.50"	84	104	187	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 6" o/c	
Bottom Edge (Lu)	8' 6" o/c	

•Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 6 1/4"	N/A	4.9		
1 - Uniform (PLF)	0 to 8 7/8"	N/A	270.0	327.0	
2 - Point (lb)	8 7/8"	N/A	986	1644	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	
Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com	

Job Notes

Floor Framing, 31 - Beam 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

An excessive uplift of -11066 lbs at support located at 4" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12835 @ 4"	18906 (5.50")	Passed (68%)		1.0 D + 0.7 E (All Spans)
Shear (lbs)	12566 @ 1' 2 1/2"	13992	Passed (90%)	1.60	1.0 D + 0.7 E (All Spans)
Pos Moment (Ft-Ibs)	13693 @ 1' 5"	23760	Passed (58%)	1.60	1.0 D + 0.7 E (All Spans)
Neg Moment (Ft-lbs)	-12115 @ 1' 5"	18315	Passed (66%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.106 @ 4' 11 9/16"	0.231	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.167 @ 4' 11 9/16"	0.463	Passed (L/664)		1.0 D + 1.0 L (All Spans)

• Deflection criteria: LL (L/480) and TL (L/240).

• Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 3".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 3".

• -892 lbs uplift at support located at 9' 7". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

Applicable calculations are based on NDS.

	B	earing Leng	th		Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Seismic	Factored	Accessories
1 - Stud wall - DF	5.50"	5.50"	3.73"	1106	1919	16756/- 16756	12835/- 11066	Blocking
2 - Stud wall - DF	5.50"	5.50"	1.50"	1106	1919	2223/-2223	3712/-892	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 11" o/c	
Bottom Edge (Lu)	9' 11" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 9' 11"	N/A	12.0			
1 - Uniform (PLF)	0 to 9' 11" (Front)	N/A	211.0	387.0	-	Default Load
2 - Point (lb)	1' 5" (Front)	N/A	-	-	18979	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator Mike Annee Annee Structural Engineering LLC (206) 658-5169 mike@anneestructural.com Job Notes

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

Floor Framing, 35 - Beam

1 piece(s) 6 3/4" x 10 1/2" 24F-V4 DF Glulam

An excessive uplift of -8360 lbs at support located at 13' 2 1/4" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	14150 @ 13' 2 1/4"	14766 (3.50")	Passed (96%)		1.0 D + 0.525 E + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	13244 @ 12' 2 1/4"	20034	Passed (66%)	1.60	1.0 D + 0.7 E (All Spans)
Pos Moment (Ft-Ibs)	36662 @ 10' 4 1/2"	39690	Passed (92%)	1.60	1.0 D + 0.7 E (All Spans)
Neg Moment (Ft-Ibs)	-24874 @ 10' 4 1/2"	30594	Passed (81%)	1.60	0.6 D - 0.7 E (All Spans)
Live Load Defl. (in)	0.291 @ 6' 8 1/16"	0.326	Passed (L/536)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.575 @ 6' 8 1/16"	0.651	Passed (L/272)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

• Deflection criteria: LL (L/480) and TL (L/240).

· Allowed moment does not reflect the adjustment for the beam stability factor.

• Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 13' 1/4".

• Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 13' 1/4".

-814 lbs uplift at support located at 2". Strapping or other restraint may be required.

• The effects of positive or negative camber have not been accounted for when calculating deflection.

• The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.

• Applicable calculations are based on NDS.

	B	earing Leng	th		Loads				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Seismic	Factored	Accessories
1 - Stud wall - DF	3.50"	3.50"	2.01"	3427	356	3526	4099/-4099	8490/-814	Blocking
2 - Stud wall - DF	3.50"	3.50"	3.35"	3427	356	3526	14880/- 14880	14150/- 8360	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	13' 4" o/c	
Bottom Edge (Lu)	13' 4" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	Seismic	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(1.15)	(1.60)	Comments
0 - Self Weight (PLF)	0 to 13' 4 1/4"	N/A	17.2				
1 - Uniform (PSF)	0 to 13' 4 1/4" (Front)	1' 4"	12.0	40.0	-	-	Default Load
2 - Point (lb)	10' 4 1/2" (Front)	N/A	-	-	-	18979	
3 - Uniform (PLF)	0 to 13' 4 1/4" (Front)	N/A	480.0	-	528.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

 ForteWEB Software Operator
 Job Notes

 Mike Annee
 Annee Structural Engineering LLC

 (206) 658-5169
 mike@anneestructural.com

Compressive Member Design Guide Hem Fir Standard Grade: Studs, Plates & Miscellaneous Framing

		E' =	1.2E+06	psi			Fc =	1300	psi		$Fc_{\perp} =$	405	psi	
height	(feet)					6	8	9	10	11	12	13	22	25
height	(in.)					72	96	108	120	132	144	156	264	300
Column	d	area	CD	C _F	P⊥	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax	Pmax
	(in.)	(sq.in.)			(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)	(lbs.)
(1) 2x3	2.5	3.75	1.15	1.15	1519	1907	1141	914	748	622	525	449	159	123
					Fce	434.03	244.14	192.901	156.25	129.132	108.507	92.4556	32.2831	25
(1) 2x4	3.5	5.25	1.15	1.15	2126	4362	2896	2372	1967	1652	1404	1206	433	337
(2) 2x4	3.5	10.50	1.15	1.15	4253	8724	5791	4745	3934	3304	2808	2413	867	673
(3) 2x4	3.5	15.75	1.15	1.15	6379	13085	8687	7117	5901	4955	4212	3619	1300	1010
(4) 2x4	3.5	21.00	1.15	1.15	8505	17447	11583	9489	7868	6607	5616	4826	1734	1347
(5) 2X4	3.5	26.25	1.15	1.15	10631	21809	14478	11862	9835	8259	7020	6032	2167	1684
(6) 2X4	3.5	31.50	1.15	1.15	12758	26171	17374	14234	11802	9911	8423	7238	2601	2020

Fce 850.69 478.52 378.086 306.25 253.099 212.674 181.213 63.2748 49

Compressive Member Design Guide Hem Fir Standard Grade: 2x6

E' = 1.2E+06 psi

1300 psi

 $Fc_{\perp} = 405$ psi

height	(feet)					6	8	9	10	11	12	13	14	18
height	(in.)					72	96	108	120	132	144	156	168	216
Column	d	area	CD	C _F	P⊥	Pmax	Pmax							
	(in.)	(sq.in.)	1		(lbs.)	(lbs.)								
(1) 2x6	5.5	8.25	1.15	1.10	3341	9339	7904	7046	6197	5417	4733	4147	3650	2309
(2) 2x6	5.5	16.50	1.15	1.10	6683	18678	15807	14091	12393	10834	9466	8294	7300	4618
(3) 2x6	5.5	24.75	1.15	1.10	10024	28017	23711	21137	18590	16251	14199	12441	10950	6928
(4) 2x6	5.5	33.00	1.15	1.10	13365	37356	31615	28182	24786	21668	18932	16589	14600	9237
(5) 2X6	5.5	41.25	1.15	1.10	16706	46695	39518	35228	30983	27085	23665	20736	18251	11546
(6) 2X6	5.5	49.50	1.15	1.10	20048	56034	47422	42273	37179	32502	28399	24883	21901	13855
(5) 2X6 (6) 2X6	5.5 5.5	41.25 49.50	1.15 1.15	1.10 1.10	16706 20048	46695 56034	39518 47422	35228 42273	30983 37179	27085 32502	23665 28399	20736 24883	18251 21901	

Fc =

Fce 2100.7 1181.6 933.642 756.25 625 525.174 447.485 385.842 233.41

PROJECT:Ehrhardt ResidenceMEMBER:Beam 6 exterior support

Section	Grade
А	#2 SPF
В	#1 DF
С	#2 DF
D	#1 HF
E	#2 HF
F	HF-STUD
G	1.8E PSL

Stud Spacing	12
Wind (psf)	0.0
Moment (ftlbs.)	0
Moment - Strong	0
Moment - Weak	0
Axial Load (plf)	4,887
Load/stud (lbs.)	4,887
Ке	1.0

# of members	3
Section Mark	2x6
Grade Mark	E
Axial Load (lbs.)	4,887
Moment Strong Axis (ftlbs.)	373
Moment Weak Axis (ftlbs.)	0
Load Duration Factor	1.15
Repetitive Factor Cr	1.15
Incised Lumber (Y/N)	Ν
Unbraced Length Strong Axis (ft.)	14.20
Unbraced Length Weak Axis (ft.)	1.33
Grade	#2 HF
Axial alone = fc/F'c	0.52
Interaction Eq. Term 1	0.27
Interaction Eq. Term 2	0.27
Interaction Eq. Term 3	0.00
Total Interaction Eq.	0.54

Mk	Section
Α	2x4
В	2x6
С	2x8
D	2x10
Е	2x12
F	4x4
G	4x6
Н	4x8
Ι	4x10
J	4x12
К	6x6
L	6x8
М	6x10
Ν	6x12
Р	3-1/2x5-1/4
3	2x6

Strong axis deflection - uniform load over simple span of 14.2' =	0.17	L/1020
Weak axis deflection - uniform load		
over simple span of $1.33' =$	0.00	L/0
Strong axis deflection - point load		
at center of 14.2' span =	0.13	L/1275
Weak axis deflection - point load at		
center of 1.33' span =	0.00	L/0

Fbx (psi) = 1,105
Fby (psi) = 1,271
Fc (psi) = 1,430
Ex (psi) = 1.30E+06
Ex min (psi) = 4.70E+05
Ey (psi) = 1.30E+06
Ey min (psi) = 4.70E+05

fc = P/A (psi) = 197.5	AXIAL
$F^*c = Fc \times Cd \times Ci(psi) = 1644.5$	
$K^{*}(le2/d2) = 3.5$	ОК
$K^{*}(le1/d1) = 31.0$	ОК
= 402.5	
$F' = Fce/F^*c = 0.245$	
c = 0.8	
(1+F')/2c = 0.778	
Cp = 0.231	Column Stability Factor
<u>F'c = F*c x Cp (psi) = 379.7</u>	
fc/F'c = 0.520	
(fc/F'c)^2 = 0.27	Interaction Equation, 1st term

fb1 = M/S (psi) = 197.5	STRONG AXIS BENDING
$Fb^* = Fb \times Cd \times Cr \times Ci (psi) = 1461.4$	
lu = 16.0	in.
le = 32.9	in.
$Rb = sq. rt.(le x d/b^2) 3.8$	ОК
Fbe = 1.2 x E'min/Rb^2 (psi) = 38974.2	ОК
$F = Fbe/Fb^* = 26.670$	
(1+F)/1.9 = 14.563	
CL = 0.998	Beam Stability Factor
<u>F'b1 (psi) = 1458.5</u>	
fb1/F'b1 = 0.135	
(psi) = 402.5	ОК
1-(fc/Fce1) = 0.509	
fb1/[F'b1*(1-(fc/Fce2))] = 0.27	Interaction Equation, 2nd term
fb2 = M/S (psi) = 0.0	WEAK AXIS BENDING
$Fb^* = Fb x Cd x Cr x Ci (psi) = 1680.6$	
Fbe = $1.2 \times E'min/Rb^2$ (psi) = 38974.2	ОК
$F = Fbe/Fb^* = 23.191$	
(1+F)/1.9 = 12.732	
CL = 0.998	Beam Stability factor
<u>F'b2 (psi) = 1676.8</u>	
fb2/F'b2 = 0.000	
(psi) = 30713.5	OK
1-(fc/Fce2) = 0.994	
fb1/Fbe = 0.005	

Allowable Axial Loads (Ibs) for 1.3E TimberStrand® LSL

Column	Effective							C	olumn Siz	е						
Bearing	Column		3½" x 3½"	1	3½" x 4¾"				3½" x 5½'			3½" x 7¼'	1	3½" x 8½"		
Туре	Length	100%	115%	125%	100%	115%	125%	100%	115%	125%	100%	115%	125%	100%	115%	125%
	3'	12,165	13,665	14,625	15,210	17,085	18,280	19,120	21,475	22,980	25,205	28,310	30,290	29,985	33,680	36,035
	4'	10,745	11,830	12,490	13,435	14,790	15,610	16,885	18,590	19,625	22,260	24,505	25,870	26,480	29,155	30,780
	5'	9,120	9,810	10,215	11,400	12,265	12,765	14,335	15,420	16,050	18,895	20,325	21,155	22,480	24,180	25,170
	6'	7,550	7,985	8,235	9,440	9,980	10,295	11,865	12,550	12,945	15,640	16,540	17,060	18,610	19,680	20,300
Un	7'	6,235	6,525	6,695	7,795	8,160	8,370	9,800	10,255	10,520	12,915	13,520	13,870	15,365	16,085	16,500
Base	8'	5,195	5,400	5,515	6,490	6,750	6,895	8,160	8,485	8,670	10,755	11,185	11,430	12,795	13,305	13,595
2400	9'	4,375	4,525	4,610	5,465	5,655	5,765	6,870	7,110	7,245	9,060	9,370	9,550	10,775	11,150	11,360
	10'	3,725	3,840	3,905	4,655	4,795	4,880	5,850	6,030	6,135	7,715	7,950	8,085	9,175	9,460	9,620
	12'	2,785	2,855	2,895	3,480	3,565	3,615	4,375	4,485	4,545	5,770	5,910	5,995	6,860	7,030	7,130
	14'	2,155	2,200	2,225	2,695	2,750	2,780	3,385	3,455	3,495	4,465	4,555	4,610	5,310	5,420	5,485
	3'-7'	5,765	5,765	5,765	7,065	7,065	7,065	8,740	8,740	8,740	10,785	10,785	10,785	12,830	12,830	12,830
	8'	5,195	5,400	5,515	6,490	6,750	6,895	8,160	8,485	8,670	10,755	10,785	10,785	12,795	12,830	12,830
Un	9'	4,375	4,525	4,610	5,465	5,655	5,765	6,870	7,110	7,245	9,060	9,370	9,550	10,775	11,150	11,360
	10'	3,725	3,840	3,905	4,655	4,795	4,880	5,850	6,030	6,135	7,715	7,950	8,085	9,175	9,460	9,620
	12'	2,785	2,855	2,895	3,480	3,565	3,615	4,375	4,485	4,545	5,770	5,910	5,995	6,860	7,030	7,130
	14'	2,155	2,200	2,225	2,695	2,750	2,780	3,385	3,455	3,495	4,465	4,555	4,610	5,310	5,420	5,485

(1) Wood plate bearing is based on compression perpendicular-to-grain stress of 425 psi adjusted per the NDS®, 3.10.4.

(2) See connection details below.

Allowable Axial Loads (Ibs) for 1.8E Parallam® PSL

Column	Effective		Column Size																
Bearing Type	Column	3½" x 3½"			31⁄2" x 51⁄4"			31⁄2" x 7"			5¼" x 5¼"			5¼" x 7"			7" x 7"		
	Length	100%	115%	125%	100%	115%	125%	100%	115%	125%	100%	115%	125%	100%	115%	125%	100%	115%	125%
	6'	10,595	11,200	11,545	15,890	16,800	17,320	21,190	22,395	23,095	33,295	36,675	38,735	40,000	40,000	40,000	40,000	40,000	40,000
	7'	8,735	9,140	9,370	13,105	13,710	14,060	17,475	18,280	18,745	30,010	32,545	34,030	40,000	40,000	40,000	40,000	40,000	40,000
	8'	7,265	7,550	7,715	10,900	11,325	11,570	14,535	15,100	15,425	26,650	28,490	29,555	35,530	37,985	39,410	40,000	40,000	40,000
	9'	6,115	6,320	6,440	9,170	9,480	9,660	12,225	12,640	12,880	23,475	24,835	25,620	31,300	33,115	34,165	40,000	40,000	40,000
•	10'	5,200	5,355	5,445	7,800	8,035	8,170	10,400	10,715	10,895	20,660	21,695	22,290	27,545	28,925	29,725	40,000	40,000	40,000
Un Column	12'	3,885	3,980	4,030	5,825	5,965	6,050	7,765	7,955	8,065	16,160	16,805	17,175	21,545	22,405	22,900	40,000	40,000	40,000
Base	14'	3,000	3,065	3,100	4,500	4,595	4,645	6,005	6,125	6,195	12,890	13,315	13,560	17,185	17,755	18,080	34,155	35,785	36,720
	16'										10,480	10,775	10,950	13,970	14,370	14,595	28,485	29,640	30,300
	18'										8,670	8,885	9,010	11,560	11,850	12,010	24,020	24,860	25,345
	20'			S	lendernes	ss ratio e	xceeds 5	0			7,285	7,445	7,535	9,710	9,925	10,050	20,475	21,110	21,475
	22'																17,630	18,125	18,405
	24'																15,325	15,715	15,935

General Notes

- Tables are based on:
 - Solid, one-piece column members used in dry-service conditions.
 - Bracing in both directions at column ends.
 - NDS®.
 - Simple columns with axial loads only. For side loads or other combined bending and axial loads, see the NDS[®].
- Allowable loads have been adjusted to accommodate the worst case of the following eccentric conditions: ¼ of column thickness (first dimension) or ¼ of column width.
- Beams and columns must remain straight to within 51/4608 (in.) of true alignment. L is the unrestrained length of the member in feet.

For column allowable design stresses see page 5.

The column and connector values listed are for dry-service conditions ONLY. When wet-service conditions exist, contact your Weyerhaeuser representative for other product solutions.

Wide face of strands

In order to use the manufacturer's published capacities when designing column caps, bases, or holdowns for uplift, the bolts or screws must be installed perpendicular to the wide face of strands as shown at left.

DO NOT install bolts or screws into the narrow face of strands

Two 16d (0.162" x 3½") nails for every 1¾" of

column width, nailed

through the plate

into the column